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A stress concentration is produced by an external load at the vertex of a crack in a 
crystal, which relaxes by plastic strain [i]. The region involved in the plastic strain is 
called the plastic zone, whose shape and strain distribution are determined by the stress 
distribution and the properties of the crystal. 

One usually distinguishes two major parts of the plastic zone: the plastic zone proper, 
which occupies much of the plastic region at the vertex, and a minor zone lying directly ahead 
of the vertex, which in the foreign literature [2] is called the failure zone, while in [3] 
we find the proposed name instability zone. The strain in this zone is usually substantially 
larger than that in the rest of the plastic zone. The main part in the instability zone is 
played by the rotational plastic deformation mode, which is accompanied by the initiation 
and growth of microcracks [4-6]. 

Sometimes there is no plastic strain at the very vertex of the crack (a zone free from 
dislocations) [7, 8]. 

Calculations have been performed [9-12] on the shape of the plastic zone and the strain 
distribution in it on the basis of a mechanical equation of state relating the local plastic 
strain e to the stress o at that point. 

This serves to explain some features of the plastic zone, but it does not incorporate 
the time course of the plastic strain or the nonlocal character of it [the stress in a given 
volume element dV(r) is dependent not only on the strain at point r but also on the strain 
distribution in adjacent areas]. In [13], a study was made of the time evolution of the plas- 
tic zone at constant stress, but no allowance was made for the nonlocal character of the stress 
in the plastic zone or for the strain distribution there. 

We have used computer simulation to establish the time-dependent trends in the plastic 
zone giving rise to the nonlocal strain. 

Consider an unbounded bcc crystal containing a rectilinear crack of length 2L, which 
lies in the (010) cleave plane y = 0 with its vertex at x = 0 (Fig. i). The shearing stress 
oyz = Oa' is applied at infinity, which is sufficient to produce a plastic zone but insuffi- 
cient for the crack to grow. 

We assume that the crystal contains uniformly distributed sources of Frank-Reed disloca- 
tions, which emit dislocation loops under the shear stress in the {ii0} easy-slip planes. We 
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assume that these loops are rectangular and elongated parallel to the crack vertex. To sim- 
plify the calculations, we assume that the segments of the loops parallel to the crack vertex 
have only a screw component, with Burgers vector 1/21001], while we neglect the segments per- 
pendicular to this. This simplification allows us to use a planar treatment. 

The plastic-strain rate in the volume dV(r) is determined by the dislocation motion in 
the {ii0} slip planes, which involves thermally activated barrier transit [14, 15]: 

dt  - -  e~  exp -- , (1)  

where C0 = i011 sec -l, t0 is a constant, U 0 is activation energy, k is Boltzmann's constant, 
T is temperature, and oe the effective tangential stress in the slip plane: 

Oe = %(r)+ % + o/(r)+ ~l(r). (2)  

A l l  t h e  t e rms  in  (2)  r e l a t e  t o  t h e s e  s l i p  p l a n e s .  Here oc i s  t h e  s t r e s s  e x t e r n a l  t o  t h e  g i v e n  
volume e l emen t  c a l c u l a t e d  from W e s t e r g a r d ' s  f o r m u l a s  [16] ( p l a n a r  d e f o r m a t i o n ) ,  which do n o t  
i n c o r p o r a t e  p l a s t i c  r e l a x a t i o n  and which  l e a d  t o  e x c e s s i v e l y  l a r g e  s t r e s s e s  in  a r e g i o n  of  
r a d i u s  R* a round  t h e  c r a c k  v e r t e x .  We t h e r e f o r e  w r i t e  ac in  t h e  form 

% (r) = o~ ] / /L  (R o + r) -1/2 ] (0), r < R*; R o = 0, r ~ R*, ( 3 )  

where f(8) is the angular part of the Westergard formula; R 0, radius of curvature at the vertex; 
os = o0 + of, short-range stresses that retard dislocations due to lattice friction o 0 and 
intersection with forest dislocations of density p; of = ~Gb~; ~, parameter of the order of 
one; G, shear modulus. Subsequently, of is replaced by the empirical relation of = ale n, 
where o I and n are constants and os is the long-range stress due to excess dislocations of 
one sign and density Ap lying at the points r': 

d r ' F  (r, r') Ap (r'). (4)  (r) 
s 

Here F is the Green's function for an infinite elastic medium having a semiinfinite slot con- 
taining a source of stress at point r' [17]: 

V-- ] , Gb 1 z' t_ .  , z = x - i - i g .  
F(r, r ) = - ~  z - - z  "+,  7 z--~'  (5) 

The integration is carried over the entire area S of the plastic zone. The density Ap is 
defined by the inhomogeneity in the plastic strain [18] 

Ap = -w1(v x s), (6) 

where b is the dislocation Burgers vector. 

Equations (1)-(6) form a system that can be solved with given values for the constants 
and the following initial conditions: at time t = 0, the strain g = 0, and a tensile stress 
o a' < o is applied. The values of o a' is taken in accordance with 

~ (t + ~t) = ~At~ + ~ (t), ( 7 ) 

where oa is the given loading rate and hti is the time step; ~a(0) = 0.1Om, with om the ap- 
plied shear stress giving the maximum strain rate emax = 0.i sec -I . When the maximum strain 
rate is attained during loading, the loading rate oa is reduced by an order of magnitude. 
The stress o a' increases to the set oa, after which the external load is fixed until equilib- 
rium in the plastic strain is attained. Here Ati is chosen automatically from the condition 
for ae to increase by its set amount in a time from t to t + dt. 

The cross section of the crystal was split up into square cells of side s to integrate 
(1)-(7); within each cell we took the calculated quantities as constant and equal to their 
values at a node in the computational net. By virtue of the symmetry, we consider only the 
upper half of the crystal (relative to the crack). 
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To derive g(ti), we substituted o(ti -- i) on the right; the initial step At = t z was 
taken such that the stress relaxation in this time can be neglected on the basis that 

= q;0exp J-- U0 (I -- c~,(o>/.~ ~ w ~  e / o)) ~signo (~ 8 l (to, 0 t 

w h e r e  O e ( ~  = O c ( ~  - o 0 s i g n  oc  f o r  [ o c t  > ~  a n d  Oe ( ~  = 0 f o r  l o c i  < o o . T h e  s u b s e q u e n t  
calculation was on an explicit scheme with automatic step selection: 

ei (ti, r) = (t i -- ti_z) ~9 exp {- Uo (i -- (o(i-I)/To'))U2 ~ (~(i-I) ._L ~-7 ] s i g n  e ~ i-i' 

( i - - l ) ,  __ �9 ( i - - 1 )  ( i - - l )  where vea (i-l)-a(i-l)--e (r) q- cr I (r) ((roq-(~/) mgn (or= -{- % ) for I cr(i-l)-~-~ �9 > (re + (~t and o(e i-i) = 0 

for [~(c i-I)+ ~i-u[< ~,+ ~/. In the calculations, we neglected increments in the plastic strain 
less than i0 -b. 

We selected the following parameters for ~-Fe for the numerical calculations: U 0 = 0.9 
eV, T o = 330 MPa [15], 6 = 2 kgf/sec-~ 2, shear modulus in the {ii0} plane G = 60 GPa [19], 
Poisson's ratio v = 0.3, and yield point a 0 = 18 MPa. Crack length i mm, radius of curvature 
at vertex R 0 = 0.i ~m, maximum applied stress oa = 1.4 MPa, temperature T = 300 K, cell size 

= 0.5 pm, n = i, and o z = 103 MPa. 
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This gave o = Oc - os - of sign g, together with the strains at the vertex at various in- 
stants. Figures 2 and 3 show that os arising from the accumulation of extensive dislocation 
charges plays a substantial part in the thermally activated plastic strain at the vertex with 
this model. In the initial period, where os is small (the dislocation charges are weak), 
the plastic zone gradually expands, while the shape changes in a self-similar fashion. As 
the plastic zone expands further, the second stage gradually sets in, where os makes the main 
contribution to (2). In this stage, the strain is substantially redistributed in the plastic 
zone. Figures 2a and 3a show lines of equal plastic strain at the vertex for t = 0.17 and 
11.8 sec. The numbers on the isolines indicate the corresponding strains in percent. Figures 
2b and 3b show the lines of equal stress for the same instants. The numbers on the isolines 
indicate o in megapascals. At t = 0.17 sec, the plastic strain occurs in the regions de- 
lineated by the dashed lines, where the stress is above the yield point. At t = 18 sec, the 
stress has become less than the yield point and the plastic strain has attained equilibrium. 

Figure 2 shows that the peak plastic strain at the initial instant lies at the crack 
vertex, while the effective stress defining the shape of the plastic zone and the strain dis- 
tribution in it is in the main described by Oc. In the closing stage of plastic-zone forma- 
tion (Fig. 3), the peak strain (1.7%) is displaced from the vertex by about 1-2 ~m, while 
the region directly adjoining the vertex is unstressed. These results indicate that the model 
partially describes the dislocation-free region occurring within the plastic zone [7, 8]. 
One expects that better agreement between theory and experiment would be possible if one in- 
corporates the penetration of the dislocations into the crack and the emission of dislocations 
by the vertex. 

In [20], the parameters of the dislocation-free zone and plastic zone were calculated 
from a model that did not incorporate the image forces. This calculation shows that the 
dislocation penetration mechanism considered in [20] to explain the dislocation-free region 
is substantially supplemented if one incorporates the image forces. 

Thus, if one allows for the long-range stress due to the accumulation of dislocations 
of one sign, one has a substantially modified conception of the plastic-zone structure as 
a passive element controlled only by the elastic stress of the crack Oc. On the other hand, 
in the final stage of plastic-zone formation, the stress os largely controls the evolution 
of the plastic strain. 
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